Elasticity Solution Approach for Functionally Graded Spherical Shell with Piezoelectric Properties

Authors

  • MohammadReza Saviz Mechanical Engineering Department, Azarbaijan shahid madani University, Tabriz, Iran
Abstract:

Based on elasticity approach, 1D analytical method is adopted in radial direction to analyze spherical shell made of FGPM. The mechanical properties are regulated by volume fraction as a function of radial coordinate. Loading can be internal and external pressures, or electric field. All mechanical and piezoelectric properties except the Poisson’s ratio are assumed to be power functions of radius. The 3D governing equations are reduced to a 1D second order nonlinear differential equation in terms of radial displacement, which then is solved analytically. By satisfying four different sets of boundary conditions and incorporating them into governing equation, a system of algebraic equations is obtained that delivers the unknown constants. Static responses of FG shell to electro-mechanical loads with different powers of material in-homogeneity ‘n’ as well as the effects of size are investigated. The accuracy and computational efficiency of the proposed approach are verified by comparing the results with those obtained for homogenous material in the literature. The induced stresses are compared to the residual stresses locked in the homogeneous sphere.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Effect of Temperature Dependency on the Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Spherical Shell

Results of electro-thermo-elastic analysis of a functionally graded thick-walled spherical shell made of temperature dependent materials are presented in this article. All material properties are assumed temperature-dependent and also are graded along the thickness direction based on power function. Temperature dependency is accounted for all material properties including, thermal, mechanical a...

full text

An Elasticity Solution for Static Analysis of Functionally Graded Curved Beam Subjected to a Shear Force

In this paper, using 2-D theory of elasticity, a closed-form solution is presented for stressdistributions and displacements of a FG curved beam under shear force at its free end. The materialproperties are assumed to vary continuously through the radial direction based on a simple power lawmodel and Poisson’s ratio is supposed to be constant. In order to verify the solution, it is shown that a...

full text

Two-Dimensional Elasticity Solution for Arbitrarily Supported Axially Functionally Graded Beams

First time, an analytical two-dimensional (2D) elasticity solution for arbitrarily supported axially functionally graded (FG) beam is developed. Linear gradation of the material property along the axis of the beam is considered. Using the strain displacement and constitutive relations, governing partial differential equations (PDEs) is obtained by employing Ressiner mixed var...

full text

Elasticity Solution of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panel

Based on three-dimensional theory of elasticity, static analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panel subjected to mechanical uniformed load with simply supported boundary conditions is carried out. In the process, stress and displacement fields are expanded according to the Fourier series along the axial and circumferential coordinates. From ...

full text

Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 1

pages  103- 123

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023